

Disclaimer

This document is drafted by OPENEDGES Technology, Inc. (the 'Company" or "OPENEDGES") for the purpose of providing information at presentations to be provided for institutional and individual investors.

Any act of divulging, copying, or redistributing this document is prohibited. Your attendance at this presentation will be deemed as acceptance of compliance with the above restrictions, and any violation of the applicable restrictions may constitute a breach of the Financial Investment Services and Capital Markets Act.

None of the "forecast information" contained herein has been subject to verification. Considering that such forecast information is necessarily about future events, the relevant information concerns the Company's future management status and financial performance and thus includes certain expressions such as 'expected', 'forecast', 'planned', 'anticipated', '(E)' or the like. The aforesaid "forecast information" is influenced by factors such as fluctuations in management conditions, so actual future performance may significantly differ from the statements as specified or implied in such "forecast information".

Please understand that any forecasts are drafted as of the date of presentation in consideration of the market conditions and the Company's management directions, etc. and are subject to change based on the market condition fluctuations and strategic modifications.

It is hereby notified that the Company and its officers will not assume any liabilities for losses arising out of the utilization of this document, whether caused by negligence or otherwise.

This document is not intended for offering, sales, sale and purchase, and subscription for shares, and no part of this document may be used as a basis or ground for related agreements and arrangements or investment decisions.

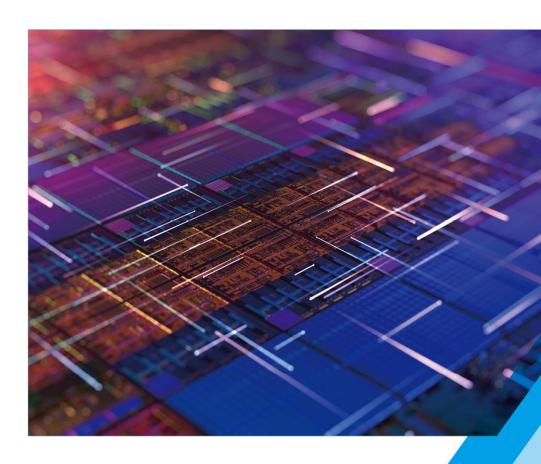
The Future of Al Computing

Table of Contents

Prologue

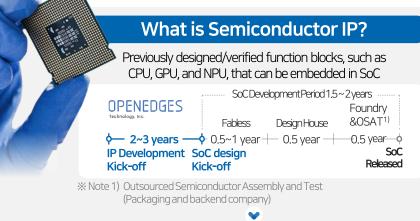
01

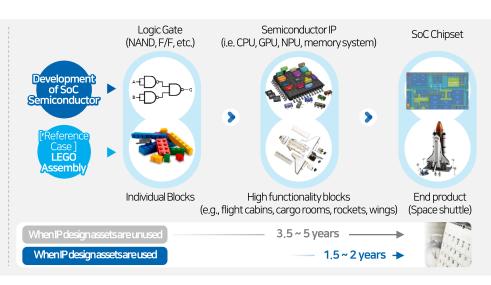
Structural Growth of System Semiconductor Market 2

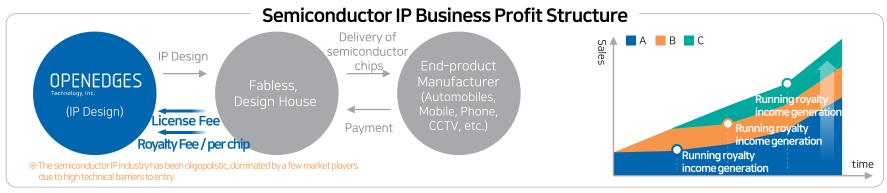

OPENEDGES Technology, as Korea's most renowned Al semiconductor IP design company 03

Financials

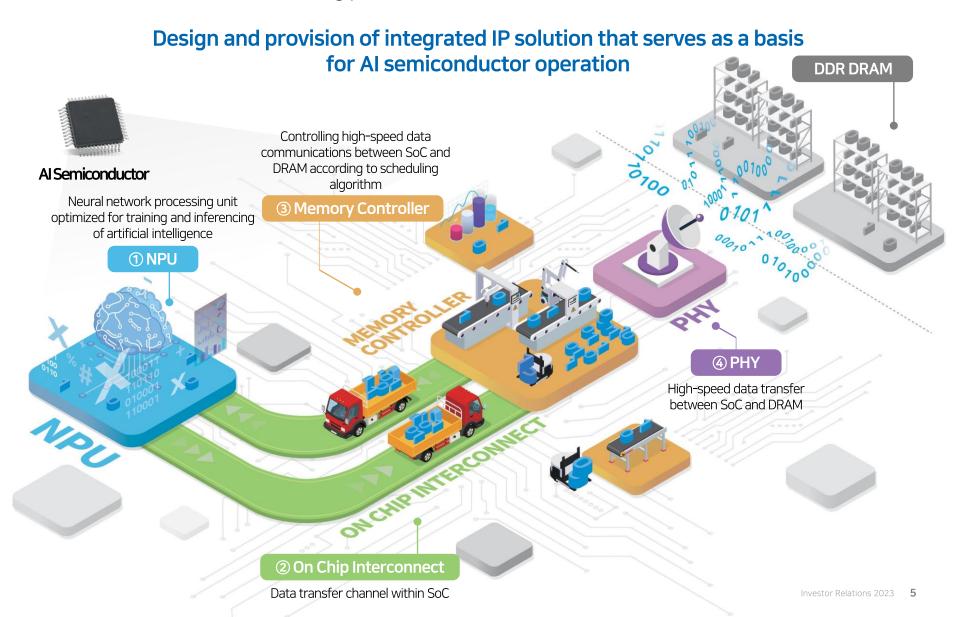
Prologue

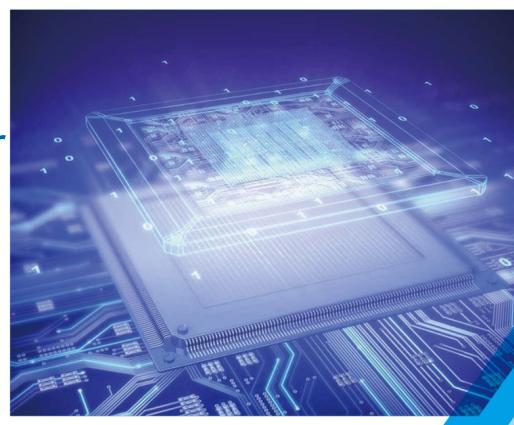

OPENEDGES Technology's Business Areas




OPENEDGES Technology's Business Areas ①

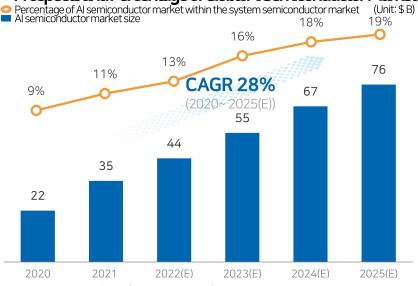
Semiconductor IP is a ready-made solution requiring high-level technologies that enable faster development of SoC (System on Chip) such as AI semiconductors, reduce costs, and mitigate the risk of failure risks in development that can cost \$100 million


Reduction in SoC design time and cost for fabless companies


OPENEDGES Technology's Business Areas ②

Structural Development of System Semiconductor Market

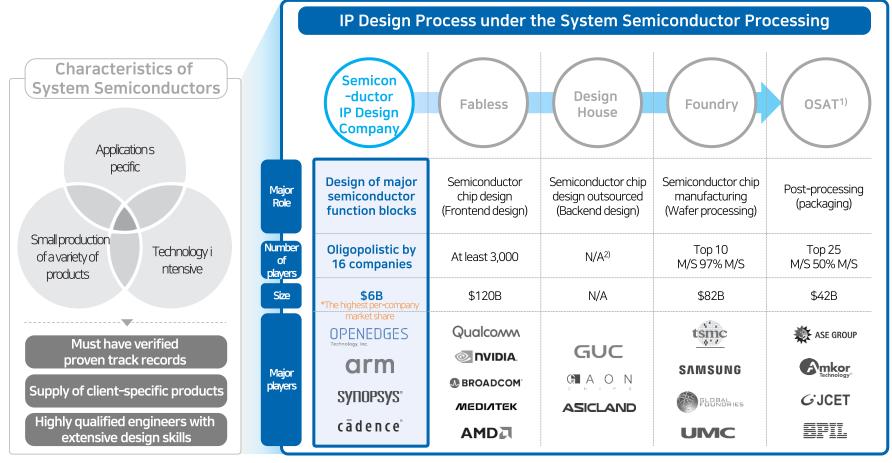
- 01. Growth of Al Semiconductor & IP Market
- 02. Roles of Semiconductor IP Design Company
- 03. Increased Significance of System Semiconductor IP Design
- 04. Korea's Full-fledged System Semiconductor
 Market Investment


01 | Growth of Global System Semiconductor Market

Contrary to memory semiconductors, system semiconductors are continuing their steady growth

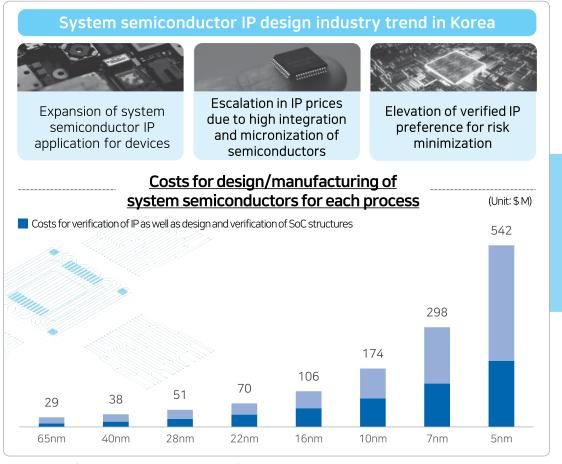
Prospects for Global Semiconductor Market during 2018-2023

Prospects and Percentage of Global AI Semiconductor Market


Global Semiconductor IP market forecast

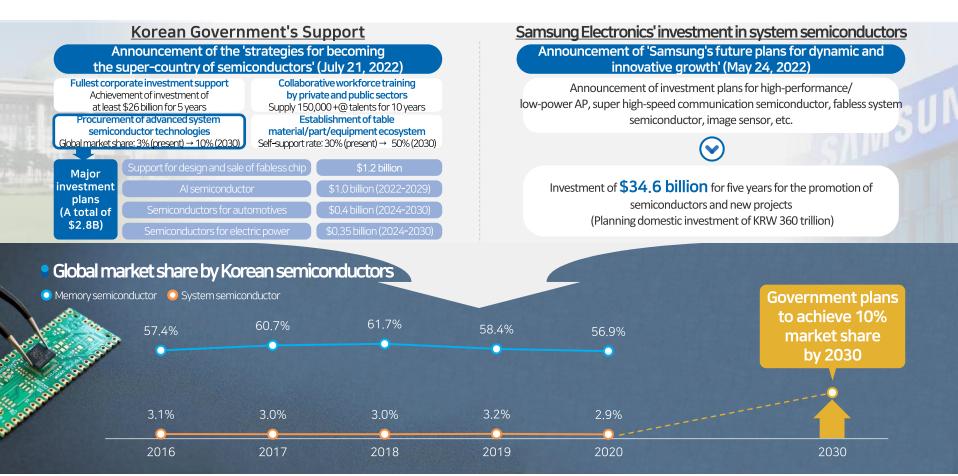
	Company	2022 Sa	les (\$ M)	CAGR (20	018-2022)
	arm	2,742		9%	
	SYNOPSYS*	1,315		10	5%
	cādence°	358		1.	4%
(OPENEDGES Technology, Inc.	7.7		107%	
	Others			1	1%
	То	tal		14	4%
	Semiconductor IP market size	е			(Unit: \$ B)
	4.7		7.5	8.7	10.2
	2020 2021	2022E	2023E	2024E	2025E
	% Source: IPnest 2022.05, Pres	Investor Relat	ions 2023 7		

03 | Roles of Semiconductor IP Design Companies


Semiconductor IP companies aim to develop and supply function blocks as needed by Fabless and Design House in a proactive manner.

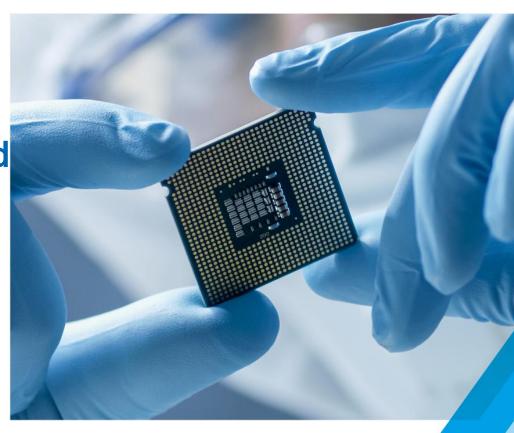
04 | Increased Significance of System Semiconductor IP Design

The rapid increase of design/manufacturing costs of system semiconductors → Emphasis on the importance of verified IP companies



05 | Korea's Full-fledged System Semiconductor Market Investment

Activation of Korea's system semiconductor market by large-scale investment in collaboration by private and public sectors


→ Expected to benefit as the only AI semiconductor IP supplier in Korea

02

OPENEDGES Technology, as Korea's most renowned Al semiconductor IP design company

- O1. The Overview of OPENEDGES's Core Competitiveness
- 02. A Global Team of Professionals
- 03. Industry's Highest Technological Competitiveness
- 04. Verified Global Track Records
- 05. Business Partnership with Global Enterprises

01 | The Overview of OPENEDGES' Core Competitiveness

OPENEDGES hold the key success factors

to become a global leader in the AI semiconductor IP market

Industry's highest technological competitiveness

02 A Global Team of Professionals 1 HQ

Leadership of industry-leading experts with over 20 years of experience from Samsung Electronics/SK Hynix, and more.

R&D personnel

Among the total personnel (132 team members)

79%

110 **R&D** personnel

Percentage of Ph.D. and Ph.D. M.S. degree holders (55 members) among the R&D personnel **50**%

Representative

Director/CEO

Ph.D. Candidate in Electrical and Computer Engineering, Seoul National University

- 2017-Present: Representative Director, OPENEDGES Technology, Inc.
- 2008-2015: Principal Researcher, Samsung Electronics (Exvnos Development)
- 2007-2008: Samsung Advanced Institute of Technology

Jake Choi NPUTeam Head

SAMSUNG MASTINITE OF TECHNOLOGY

SAMSUNG

- Ph.D. in Electrical and Computer Engineering, Purdue University
- 2018-Present: NPU Team Head, OPENEDGES Technology, Inc.
- 2015-2018: Principal Researcher, SK Hynix
- 2009-2014: Architecture Lab Part Head, Samsung Electronics

Sunny Kim PHYTeam Head

- M,S,in Electrical Engineering, Sungkyunkwan University 2021-Present: PHY Team Head. OPENEDGES Technology. Inc.
- 2018-2021: NAND IP Development Team Head, SK Hvnix
- 1998-2017: Principal Researcher, Samsung Electronics

Eric Jung System Architecture Team Head

- B.S. in Electronic and Electrical Engineering, Kyungpook National University
- 2018-Present: SA Team Head, OPENEDGES Technology, Inc.
- 2013-2018: Lead Engineer, Imagination Tech.
- 2003-2013: DM Technology, Chips & Media

Cody Hwang R&D Center Head / CTO / Co-founder

M.S.in Electrical Engineering, Seoul National University

- 2017- Present: CTO, OPENEDGES Technology, Inc. 2010-2015: CTO. CodeHolics
- 2000-2010: Daewoo Electronics, Chips & Media

Henry Moon Memorycontroller Team Head

SK hynix | SAMSUNG

M.S.in Computer Engineering, Seoul National University

- 2018-Present: MC Team Head, OPENEDGES Technology, Inc.
- 2017-2018: Memory System Laboratory Part Head, SK Hynix
- 2000-2016: AP Development Team Part Head, Samsung Electronics

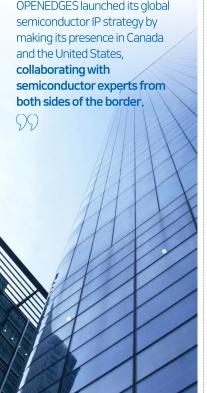
Dean Kim Verification Team Head

Master of Architecture, Seoul National University

- 2022-Present: Verification Team Head, OPENEDGES Technology, Inc.
- 2005-2022: Digital Technology Team Part Head. Samsung Electronics
- 2001-2005: MIDAS IT.

Ph.D. in Computer System Engineering, Korea University

- 2021-Present: NoC Team Head, OPENEDGES Technology, Inc.
- 2009-2021: SW Development Team Head, Chips & Media


2000-2009: Advanced Digital Chips, Inc. (Adchips)

02 | Global Team of Professionals ② Global Networks

With the leading expertise of professionals from global networks with extensive experience

TSS/CEO

AMD | PERASO

M.S. in Electrical and Electronic Engineering, Univ. of Toronto

- 2018-Present: CEO. The Six Semiconductor
- 2012-2018: Silicon Director, etc., Peraso Technologies
- 2000-2011: PHY Analog Design Manager, AMD

AMD SYNOPSYS

Ricky Lau TSS/CTO

M.S. in Electrical and Electronic Engineering, Univ. of Toronto

- 2018-Present: CTO. The Six Semiconductor
- 2014-2018: PHY Digital Design Engineer, Synopsys
- 2003-2014: PHY Analog Design Engineer, etc., AMD

Ron Chan TSS/COO

- M.S. in IC Design, Hong Kong Univ.
- 2018-Present: COO. The Six Semiconductor
- 2006-2016: Principal Engineer, Pixelworks • 2001-2006: Senior Engineer, ATI Tech.

Alan Poon TSS/VPEngineering

AMD PERASO

- M.S. in Application Engineering, Univ. of Toronto • 2019-Present: The Six Semiconductor
- Full Design Custom VP Engineering 2004-2019 Peraso Technology, AMD, etc.

Jason Mangattur TSS/VPEnaineering

AMD SYNOPSYS"

B.S. in Electronic Engineering, Waterloo Univ.

- 2022-Present: Applied Eng. & IP Val. VP Engineering, The Six Semiconductor
- 1999-2021: Synopsys, AMD, ATI Tech., etc.

Nisreen Atout TSS/DirectorofProgram Operations&System Engineering

- B.S. in Electrical Engineering, Univ. of Toronto • 2022-Present: Director of Program Operations &
- System Engineering, The Six Semiconductor • 2016-2022: Director of Systems Engineering, Rambus
- 2006-2016: AMD, Semtech, etc.

Moez Cherif OTC/Software Group Leader

ARTERISE | MAGMA | SYNOPSYS"

Ph.D. in Computer Science, INPG Univ.

- 2021-Present: S/W Group Head, U.S. entity of OPENEDGES Technology
- 2018-2021: Principal S/W Architect, Arteris IP
- 1995-2017: Synopsys, Magma Design Automation, etc.

Roger Jennings OTC/VP of Engineering

ARTERISE AMD (intel)

 2022-Present: VP of Engineering, U.S. entity of OPENEDGES Technology, Inc.

• 2020-2022: Arteris IP Senior Director of Engineering

M.S. in Electrical and Electronic Engineering, Univ. of Memphis

2000-2021: Intel, Juniper Networks, AMD etc.

02 | A Global Team of Professionals - Global Presence

Seeking Global Expansion for the International hubs

Openedges Technology Inc.

Date of establishment	December 2017
Number of employees	83 team members (as of the end of December 2022)
CEO	Sean Lee
Major roles	NPU, On-chip Interconnect, Memory Controller, development of DDR PHY IP, and general management of global sales

U.S. Subsidiary

(San Jose, California)

OPENEDGES Technology, Corp. (OTC)

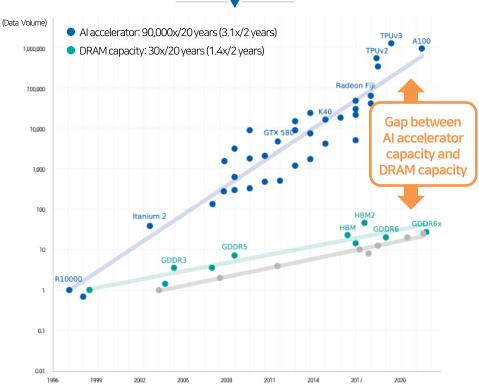
Date of establishment	July 2021 (100% contributed estab lishment)
Number of employees	8 team members (as of the end of December 2022)
CEO	Jayden Seo (concurrent office held by the headquarters' VP)
Major roles	On-chip Interconnect, DDR PHY, de velopment of high-performance NP U IP, and sales hub for the North A merica regions

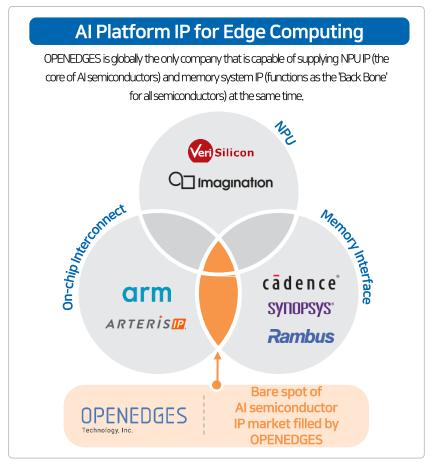
Canada Subsidiary

(Markham, Ontario)

THE SIX SEMICONDUCTOR Inc (TSS)

11 12 31/ (321 11801 120 CT OT (, 1118. (133)				
Date of establishment	June 2018 (100% acquisition in De cember 2019)			
Number of employees	41 team members (as of the end of December 2022)			
CEO	Richard Fung (Co-Founder)			
Major roles	Development of DDR PHY IP			

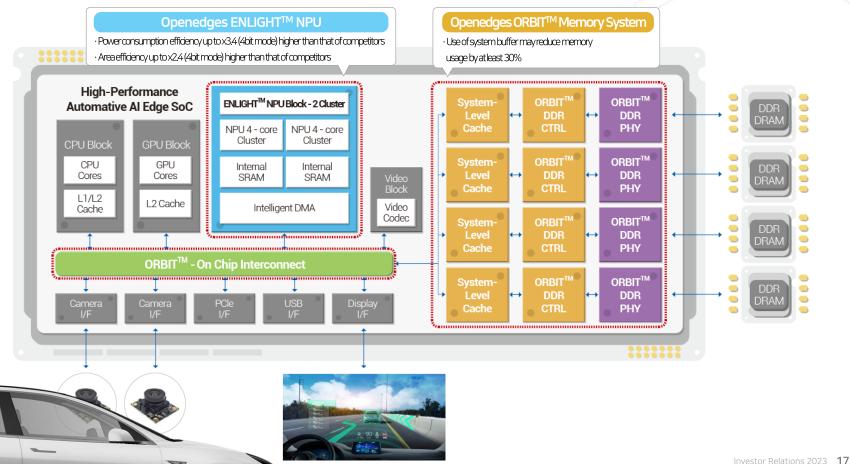



03 | Industry's Highest Technological Competitiveness ①

Al semiconductors are characterized as 'Data Intensive Computing' → Most optimize NPU and memory systems in edge AI with limited resources

OPENEDGES is the only global leading AI semiconductor IP platform provider

The gap between the required data processing volume and the capacity provided by DRAMs has increased due to the development of AI accelerator technologies

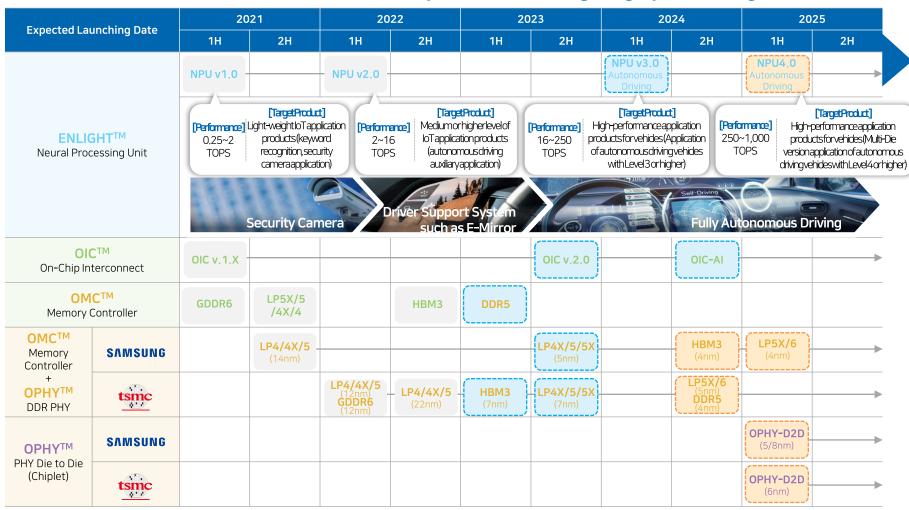


03 | Industry's Highest Technological Competitiveness 2

A leading AI semiconductor IP platform provider, OPENEDGES provides higher efficiencies in power, size, and memory compared to its competitors

[Examples showing OPENEDGES' integrated IP solutions applied to the AI semiconductor for autonomous driving vehicles]

03 | Industry's Highest Technological Competitiveness ③


Leading the market through the development of cutting-edge technology

Division	IP	Description	Development status	Remark
		ENLIGHT™-L (1st gen. a.k.a v1.0)	Now	Lightweight IoT applications (Keyword recognition, security camera application)
Al Platform IP Solution	ENLIGHT™	ENLIGHT™-R (2nd gen. a.k.a v2.0)	Now	Intermediate IoT applications (ADAS)
for Edge Computing	(Neural Processing Unit)	ENLIGHT™-P (3rd gen. a.k.a v3.0)	In the process	Automotive high-performance applications (Level 3 or higher self-driving vehicle application)
		ENLIGHT™-X (4th gen. a.k.a v4.0)	In the future	Automotive high-performance applications (Level 4 or higher self-driving vehicle application)
		DDR4/3, LPDDR4X/4/3	Now	Current Mainstream Technology
		LPDDR5X/5/4X/4	Now	Next-generation Mainstream Technology
	ОМСТМ	LPDDR6	In the future	Next-generation Mainstream Technology
	(DDR Memory Controller)	DDR5	In the process	Next-generation Mainstream Technology
		GDDR6	Now	High-performance Al product
		GDDR7	In the future	High-performance Al product
		НВМ3	Now	Server and ultra-high-performance products
		LPDDR4X/4	Now	TSMC 22nm Nodes
Total Memory		LPDDR4X/4, LPDDR5/4X/4	Now	TSMC 12nm Nodes
System Solution		LPDDR5X/5/4X/4	Test chip	TSMC 7nm Nodes
IP		LPDDR6	In the future	-
(ORBIT™)	OPHY™	DDR5	In the future	-
	(DDR PHY)	GDDR6	Now	TSMC 12nm Nodes
	(551.111)	НВМ3	Test chip	TSMC 7nm Nodes
		LPDDR4X/4, LPDDR5/4X/4	Now	Samsung 14nm Nodes
		LPDDR5X/5/4X/4	In the process	Samsung 5nm Nodes
		LPDDR6	In the future	-
		GDDR7	In the future	-
	OICTM	OICTM	Now	Non- Cache-Coherent NoC
	(On-Chip-Interconnect)	OIC TM -AI	In the process	Cache-Coherent NoC

03 | Industry's Highest Technological Competitiveness 4

Maximize first-mover advantage of AI semiconductor integrated IP solutions, based on the continued development of leading-edge processing

04 | Verified Global Track Records

Expanding global track record as value recognized as the essential solution in various industries

05 | Business Partnership with Global Enterprises

Securing stable IP demands + Proactive response to advanced technologies and market trends

03

1Q23 Financials

- 01. Financial Statement Summary
- 02. 1Q23 Performance Analysis
- 03. Development Status by IP Type

01 | Financial Statements Summary

Summary of Financial Statements

(Unit: KRW 1 million)

	2023 1Q	2022	2021	2020
Current Assets	34,484	44,304	29,020	6,216
Non-current Assets	11,176	9,552	7,077	4,075
Total Assets	45,660	53,855	36,097	10,291
Current Liabilities	17,126	18,318	9,171	5,477
Non-current Liabilities	3,450	3,288	6,374	31,550
Total Liabilities	20,577	21,606	15,545	37,027
Capital	2,116	2,116	1,653	15
Capital Surplus	96,388	96,376	58,927	-
Other Capital	2,479	2,026	3,006	1,697
Earned Surplus	- 5,900	-68,269	-43,034	-28,449
Total Capital	25,083	32,249	20,552	-26,737

Summary of Income Statements

(Unit: KRW 1 million)

	1Q23	4Q22	Change	Change(%)
Sales	1,059	1,426	-367	-25.7
Sales Cost	-	-	-	-
Gross Margin	1,059	1,426	-367	-25.7
Sales Management Expenses	8,801	14,344	-5,543	-38.6
Operating Profits	- 7,742	-12,918	5,176	N/A
Financial Profits	415	365	50	13.7
Financial Costs	331	197	134	68.0
Other Profits	43	422	-379	-89.8
Other Costs	19	33	-14	-42.4
Net Profit before Corporate Tax Costs	-7,634	-12,362	4,728	N/A
Corporate Tax Costs	-4	383	-387	N/A
Current Net Income	- 7,631	-12,745	5,114	N/A

^{**} Based on the consolidated financial statements

02 | 1Q23 Performance Analysis

Due to the global recession, orders are delayed by one to two quarters By increasing orders in the second half of the year, it is expected to do its best to achieve the goal originally planned for listing.

1Q23 Performance Analysis

- ☐ Due to the rapid global recession from the second half of 2022, new SoC development projects are postponed
- * System-on-Chip, takes about 2 years from start of development to mass production
- Recently, new SoC R&D investment due to a lack of investment funds due to a sharp decline in profits and deteriorating cash flow has been delayed
- Funding delays due to recession also exacerbated SoC start-up delays
 - · In situations where major contract conditions such as price have been agreed with multiple clients, IP license postponed due to delays in securing development funds for Fabless
 - Ex.) Company A in China, Company B in Germany: '23.1Q → Contract postponed to the second half of 2023
- → We are still discussing the timing of the contract, but several contract signings with potential clients have been delayed

Orders and Sales Forecast after 2023

- ☐ In the second half of the year, development projects currently pending are expected to start.
- As the client's PJT has not been canceled or dropped, about 70% of the clients that have been negotiating since the beginning of remain as order candidates.중

Current status of order candidates

	Contract	PJT Drop	Lost	Remain	Total
Status	4	0	2	12	18
(%)	(22%)	(0%)	(11%)	(67%)	(100%)

- Including existing negotiations, contract negotiations are currently underway with more than 20 domestic and foreign customers.
- ☐ The key points are to get higher price orders and to secure global customers.
- ASP per orders will be increased
- · due to IP total solution + latest memory standard IP * Single IP → Expansion of 2~3 IP supply * LPDDR5X, DDR5, etc
- Expecting to secure customers(US/China/Japan)
- · Signed contracts with Aisin(Japan) and IDM(Korea)
- · Negotiating with top-tier companies in China/US

03 | Development Status by IP Type

Status by IP

ENLIGHT™ (Neural Processing Unit)

V3.0 development in progress

- 16~250 TOPS target/Application requiring higher calculation
- Aiming to complete development by '24.1H
- Expanding flexibility for meeting various customer needs

OMC[™] (DDR Memory Controller)

DDR5 memory standard memory controller development in progress

- Developed GDDR6, HBM3, LPDDR5X memory controller
- Will develop DDR5 memory controller the first half of 2023
- Orders are expected due to increasing use of new memory standards such as DDR5 and HBM3

OIC™ (On-Chip-Interconnect)

V2.0 Upgrade in progress

- Aiming to complete the upgrade by the end of 2023
- Improving performance and customer convenience
- Expecting to contribute to sales from 2024 after upgrade

OPHY™ (DDR PHY)

Superior performance with our own design know-how

- Area optimization at 50% compared to competitors
- Samsung 5nm PHY IP development in progress following TSMC 7nm at the end of last year
- Samsung 5nm (LPDDR5X) PHY is expected to preoccupy the market as it is the world's first development among major IP vendors