

Disclaimer

This document is drafted by OPENEDGES Technology, Inc. (the 'Company" or "OPENEDGES") for the purpose of providing information at presentations to be provided for institutional and individual investors.

Any act of divulging, copying, or redistributing this document is prohibited. Your attendance at this presentation will be deemed as acceptance of compliance with the above restrictions, and any violation of the applicable restrictions may constitute a breach of the Financial Investment Services and Capital Markets Act.

None of the "forecast information" contained herein has been subject to verification. Considering that such forecast information is necessarily about future events, the relevant information concerns the Company's future management status and financial performance and thus includes certain expressions such as 'expected', 'forecast', 'planned', 'anticipated', '(E)' or the like. The aforesaid "forecast information" is influenced by factors such as fluctuations in management conditions, so actual future performance may significantly differ from the statements as specified or implied in such "forecast information".

Please understand that any forecasts are drafted as of the date of presentation in consideration of the market conditions and the Company's management directions, etc. and are subject to change based on the market condition fluctuations and strategic modifications.

It is hereby notified that the Company and its officers will not assume any liabilities for losses arising out of the utilization of this document, whether caused by negligence or otherwise.

This document is not intended for offering, sales, sale and purchase, and subscription for shares, and no part of this document may be used as a basis or ground for related agreements and arrangements or investment decisions.

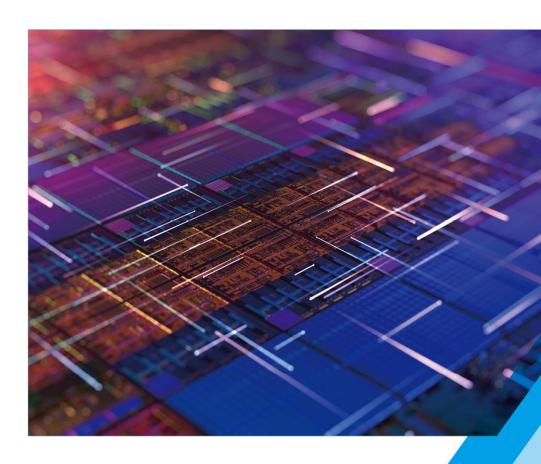
The Future of Al Computing

Table of Contents

Prologue

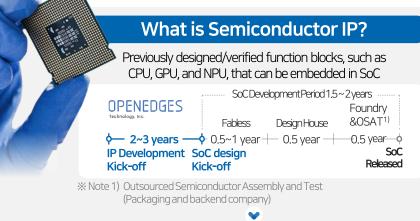
01

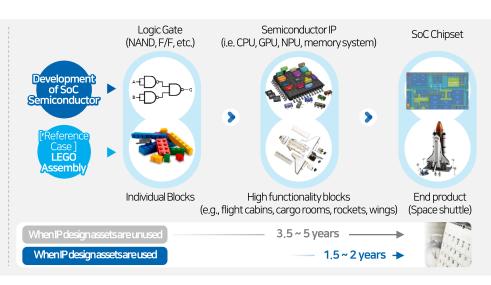
Structural Growth of System Semiconductor Market **)**2

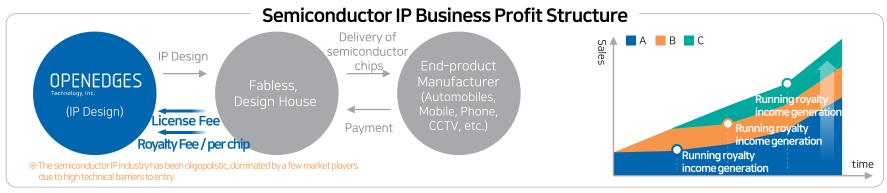

OPENEDGES Technology, as Korea's most renowned Al semiconductor IP design company 03

Financials

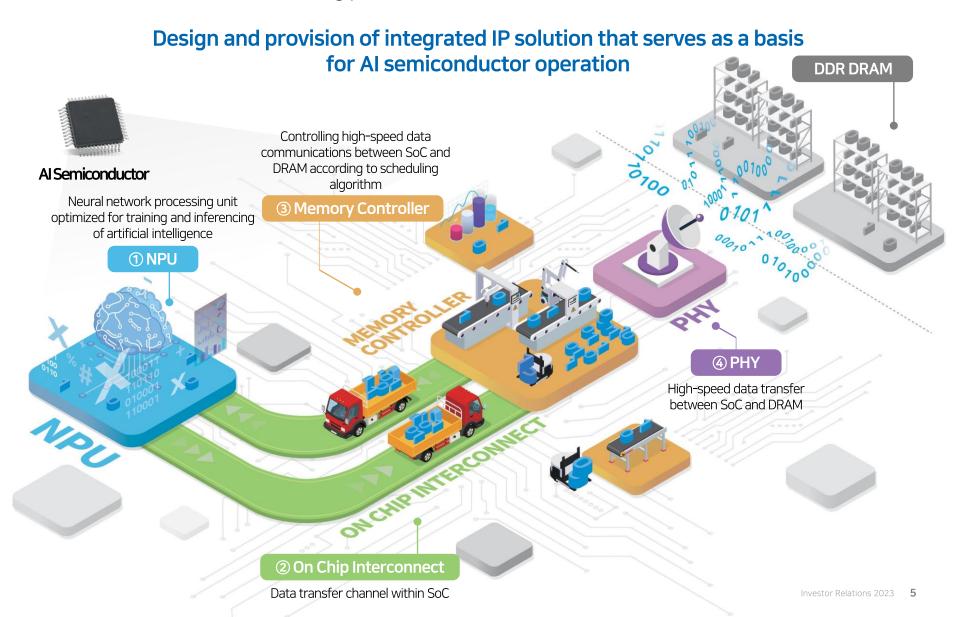
Prologue


OPENEDGES Technology's Business Areas




OPENEDGES Technology's Business Areas ①

Semiconductor IP is a ready-made solution requiring high-level technologies that enable faster development of SoC (System on Chip) such as AI semiconductors, reduce costs, and mitigate the risk of failure risks in development that can cost \$100 million

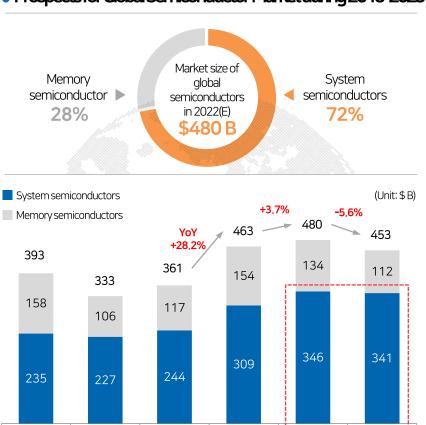

Reduction in SoC design time and cost for fabless companies



OPENEDGES Technology's Business Areas ②

Structural Development of System Semiconductor Market

- 01. Growth of the Global System
 Semiconductor Market
- 02. Continuation Growth of the Global Semiconductor IP Market
- 03. Roles of Semiconductor IP Design Company
- 04. Increased Significance of System
 Semiconductor IP Design
- 05. Korea's Full-fledged System Semiconductor Market Investment

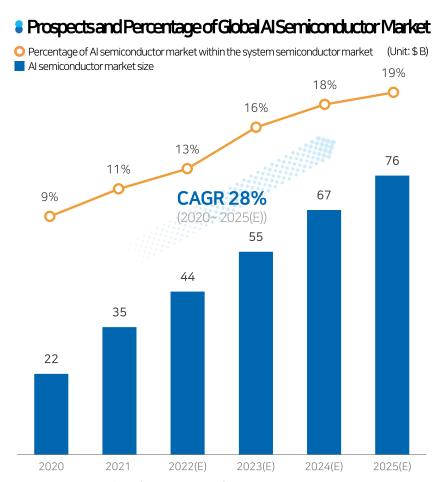


01 | Growth of Global System Semiconductor Market

Contrary to memory semiconductors, system semiconductors are continuing their steady growth

Prospects for Global Semiconductor Market during 2018-2023

2021

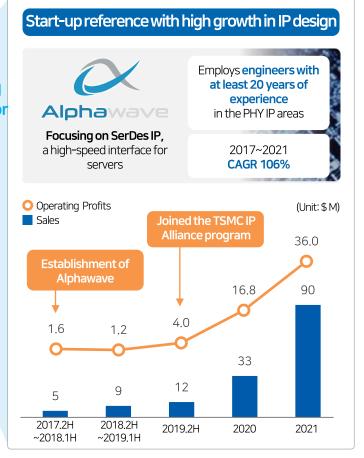

2022(E)

2023(E)

2020

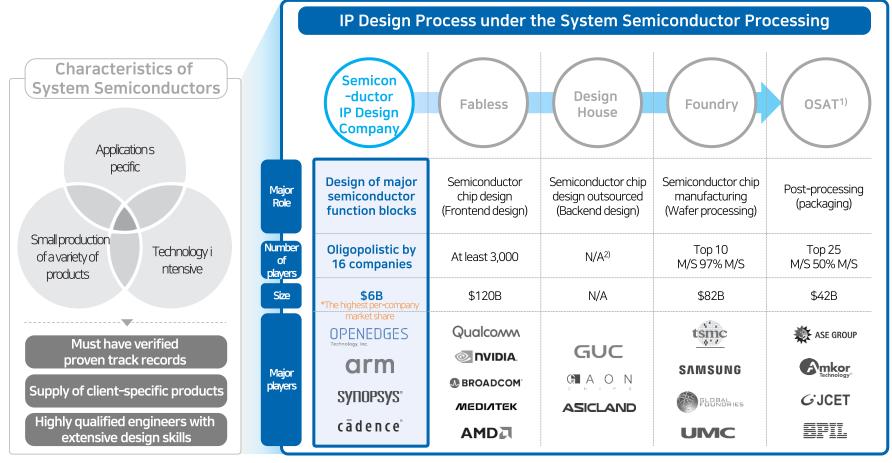
2018

2019

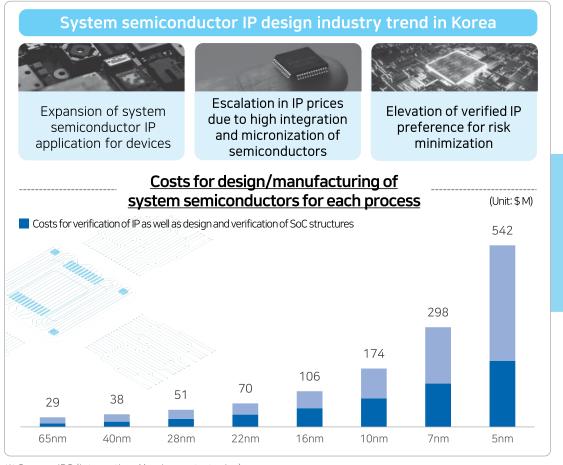

Source: IPnest 2022.05. Press Clipping

02 | Continuation Growth of Global Semiconductor IP Market

Semiconductor IP market with rapid growth potential for start-ups

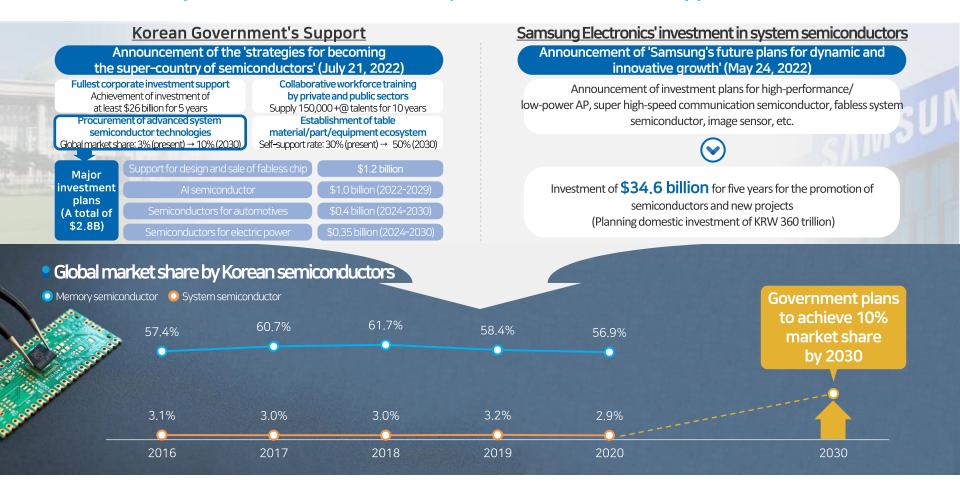

Global Semiconductor IP market forecast 2021 Sales (\$ M) CAGR (2017-2021) Company 66 arm 2,665 10% With the increase in Al SYNOPSYS* 1,077 20% semiconductor cādence 315 19% data throughput, X 90 106% high-speed interface Others 10% demand skyrockets 13% Total 99 Semiconductor IP market size (Unit: \$B) **CAGR 16.8%** 10.2 (2020~ 2025(E)) 8.7 7.5 6.4 5.5 4.7 2020 2021 2022E 2023E 2024E 2025E

03 | Roles of Semiconductor IP Design Companies


Semiconductor IP companies aim to develop and supply function blocks as needed by Fabless and Design House in a proactive manner.

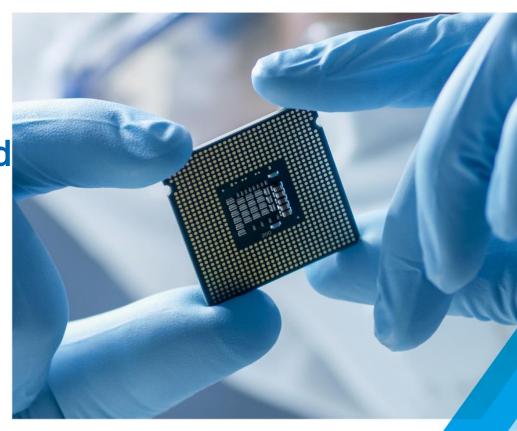
04 | Increased Significance of System Semiconductor IP Design

The rapid increase of design/manufacturing costs of system semiconductors → Emphasis on the importance of verified IP companies



05 | Korea's Full-fledged System Semiconductor Market Investment

Activation of Korea's system semiconductor market by large-scale investment in collaboration by private and public sectors


→ Expected to benefit as the only AI semiconductor IP supplier in Korea

02

OPENEDGES Technology, as Korea's most renowned Al semiconductor IP design company

- O1. The Overview of OPENEDGES's Core Competitiveness
- 02. A Global Team of Professionals
- 03. Industry's Highest Technological Competitiveness
- 04. Verified Global Track Records
- 05. Business Partnership with Global Enterprises

01 | The Overview of OPENEDGES' Core Competitiveness

OPENEDGES hold the key success factors

to become a global leader in the AI semiconductor IP market

Industry's highest technological competitiveness

02 | A Global Team of Professionals - Global Presence

Seeking Global Expansion for the International hubs

Openedges Technology Inc.

Date of establishment	December 2017
Number of employees	79 team members (as of the end of December 2022)
CEO	Sean Lee
Major roles	NPU, On-chip Interconnect, Memory Controller, development of DDR PHY IP, and general management of global sales

U.S. Subsidiary

(San Jose, California)

OPENEDGES Technology, Corp. (OTC)

Date of establishment	July 2021 (100% contributed estab lishment)
Number of employees	8 team members (as of the end of December 2022)
CEO	Jayden Seo (concurrent office held by the headquarters' VP)
Major roles	On-chip Interconnect, DDR PHY, de velopment of high-performance NP U IP, and sales hub for the North A merica regions

Canada Subsidiary

(Markham, Ontario)

THE SIX SEMICONDUCTOR, Inc. (TSS)

Date of establishment	June 2018 (100% acquisition in De cember 2019)
Number of employees	39 team members (as of the end of December 2022)
CEO	Richard Fung (Co-Founder)
Major roles	Development of DDR PHY IP
Major roles	Development of DDR PHY IP

02 A Global Team of Professionals 1 HQ

Leadership of industry-leading experts with over 20 years of experience from Samsung Electronics/SK Hynix, and more.

R&D personnel

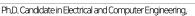
Among the total personnel (126 team members)

79%

100 **R&D** personnel

50

Percentage of Ph.D. and Ph.D. M.S. degree holders (59 members) among the R&D personnel **59**%


Status of Each Country

Sean Lee Representative Director/CEO

- Seoul National University 2017-Present: Representative Director, OPENEDGES Technology, Inc.
- 2008-2015: Principal Researcher, Samsung Electronics (Exvnos Development)
- 2007-2008: Samsung Advanced Institute of Technology

Jake Choi NPUTeam Head

- Ph.D. in Electrical and Computer Engineering, Purdue University
- 2018-Present: NPU Team Head, OPENEDGES Technology, Inc.
- 2015-2018: Principal Researcher, SK Hynix
- 2009-2014: Architecture Lab Part Head, Samsung Electronics

Sunny Kim PHYTeam Head

SAMSUNG

M,S,in Electrical Engineering, Sungkyunkwan University

- 2021-Present: PHY Team Head. OPENEDGES Technology. Inc.
- 2018-2021: NAND IP Development Team Head, SK Hvnix
- 1998-2017: Principal Researcher, Samsung Electronics

Eric Jung System Architecture Team Head

- B.S. in Electronic and Electrical Engineering, Kyungpook National University
- 2018-Present: SA Team Head, OPENEDGES Technology, Inc.
- 2013-2018: Lead Engineer, Imagination Tech.
- 2003-2013: DM Technology, Chips & Media

Cody Hwang R&D Center Head / CTO / Co-founder

M.S.in Electrical Engineering, Seoul National University • 2017- Present: CTO, OPENEDGES Technology, Inc.

- 2010-2015: CTO. CodeHolics
- 2000-2010: Daewoo Electronics, Chips & Media

Henry Moon Memorycontroller Team Head

SK hynix | SAMSUNG

M.S.in Computer Engineering, Seoul National University

- 2018-Present: MC Team Head, OPENEDGES Technology, Inc.
- 2017-2018: Memory System Laboratory Part Head, SK Hynix 2000-2016: AP Development Team Part Head, Samsung Electronics

Dean Kim Verification Team Head

Master of Architecture, Seoul National University

- 2022-Present: Verification Team Head, OPENEDGES Technology, Inc.
- 2005-2022: Digital Technology Team Part Head. Samsung Electronics
- 2001-2005: MIDAS IT.

Ethan Kim NoCTeam Head

Ph.D. in Computer System Engineering, Korea University

- 2021-Present: NoC Team Head, OPENEDGES Technology, Inc.
- 2009-2021: SW Development Team Head, Chips & Media

2000-2009: Advanced Digital Chips, Inc. (Adchips)

02 | Global Team of Professionals ② Global Networks

With the leading expertise of professionals from global networks with extensive experience

Starting with the HQ in 2017. OPENEDGES launched its global semiconductor IP strategy by making its presence in Canada and the United States. collaborating with

TSS/CEO

AMD | PERASO

M.S. in Electrical and Electronic Engineering, Univ. of Toronto

- 2018-Present: CEO. The Six Semiconductor
- 2012-2018: Silicon Director, etc., Peraso Technologies
- 2000-2011: PHY Analog Design Manager, AMD

TSS/CTO

AMD SYNOPSYS

M.S. in Electrical and Electronic Engineering, Univ. of Toronto

- 2018-Present: CTO. The Six Semiconductor
- 2014-2018: PHY Digital Design Engineer, Synopsys
- 2003-2014: PHY Analog Design Engineer, etc., AMD

Ron Chan TSS/COO

pixelworks

- M.S. in IC Design, Hong Kong Univ.
- 2018-Present: COO. The Six Semiconductor 2006-2016: Principal Engineer, Pixelworks
- 2001-2006: Senior Engineer, ATI Tech.

Alan Poon TSS/VPEngineering

AMD PERASO

M.S. in Application Engineering, Univ. of Toronto • 2019-Present: The Six Semiconductor

- Full Design Custom VP Engineering
- 2004-2019 Peraso Technology, AMD, etc.

Jason Mangattur TSS/VPEnaineering

AMD SYNOPSYS"

B.S. in Electronic Engineering, Waterloo Univ. 2022-Present: Applied Eng. & IP Val. VP Engineering, The Six Semiconductor

• 1999-2021: Synopsys, AMD, ATI Tech., etc.

Nisreen Atout TSS/DirectorofProgram Operations&System Engineering

B.S. in Electrical Engineering, Univ. of Toronto • 2022-Present: Director of Program Operations &

- System Engineering, The Six Semiconductor
- 2016-2022: Director of Systems Engineering, Rambus
- 2006-2016: AMD, Semtech, etc.

Moez Cherif OTC/Software Group Leader

ARTERISE | MAGMA | SYNOPSYS"

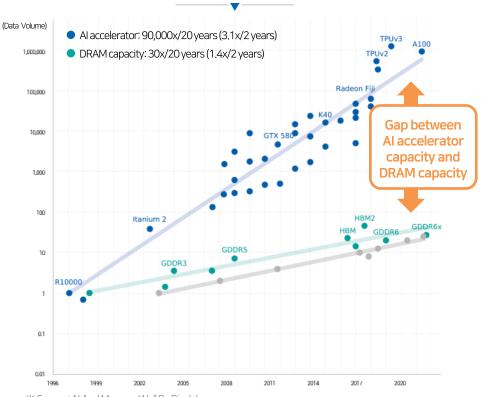
- Ph.D. in Computer Science, INPG Univ.
- 2021-Present: S/W Group Head, U.S. entity of OPENEDGES Technology
- 2018-2021: Principal S/W Architect, Arteris IP
- 1995-2017: Synopsys, Magma Design Automation, etc.

Roger Jennings OTC/VP of Engineering

ARTERISE AMD (intel)

M.S. in Electrical and Electronic Engineering, Univ. of Memphis 2022-Present: VP of Engineering, U.S. entity of OPENEDGES Technology, Inc.

- 2020-2022: Arteris IP Senior Director of Engineering
- 2000-2021: Intel, Juniper Networks, AMD etc.

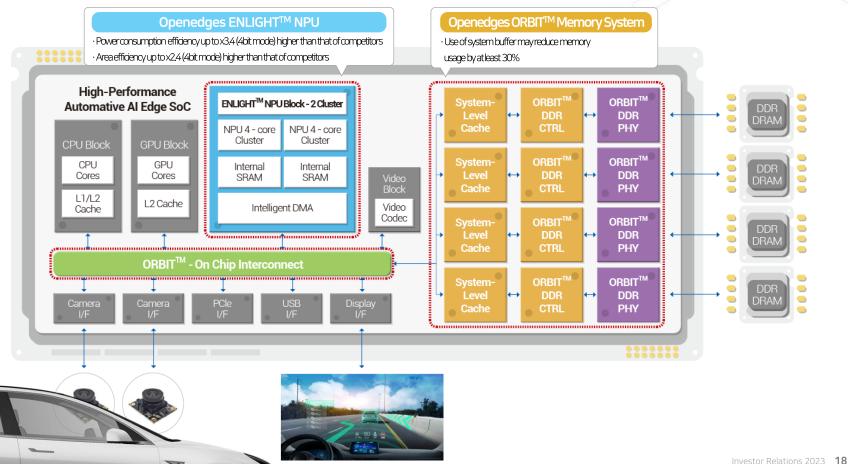


03 | Industry's Highest Technological Competitiveness ①

Al semiconductors are characterized as 'Data Intensive Computing' → Most optimize NPU and memory systems in edge AI with limited resources

OPENEDGES is the only global leading AI semiconductor IP platform provider

The gap between the required data processing volume and the capacity provided by DRAMs has increased due to the development of AI accelerator technologies

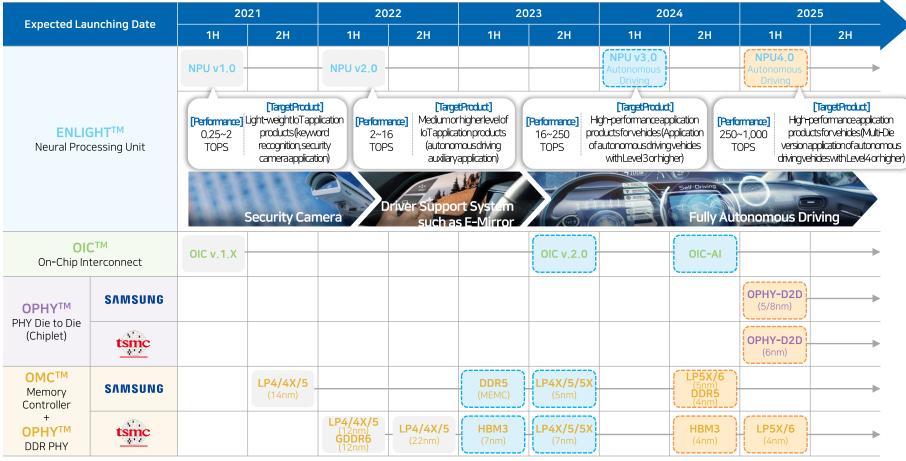


03 | Industry's Highest Technological Competitiveness 2

A leading AI semiconductor IP platform provider, OPENEDGES provides higher efficiencies in power, size, and memory compared to its competitors

[Examples showing OPENEDGES' integrated IP solutions applied to the AI semiconductor for autonomous driving vehicles]

03 | Industry's Highest Technological Competitiveness ③


Leading the market through the development of cutting-edge technology

Division	IP	Description	Development status	Remark
		ENLIGHT™-L (1st gen. a.k.a v1.0)	Now	Lightweight IoT applications (Keyword recognition, security camera application)
Al Platform IP Solution	ENLIGHT™	ENLIGHT™-R (2nd gen. a.k.a v2.0)	Now	Intermediate IoT applications (ADAS)
for Edge Computing	(Neural Processing Unit)	ENLIGHT™-P (3rd gen. a.k.a v3.0)	In the process	Automotive high-performance applications (Level 3 or higher self-driving vehicle application)
		ENLIGHT™-X (4th gen. a.k.a v4.0)	In the future	Automotive high-performance applications (Level 4 or higher self-driving vehicle application)
		DDR4/3, LPDDR4X/4/3	Now	Current Mainstream Technology
		LPDDR5X/5/4X/4	Now	Next-generation Mainstream Technology
	ОМСТМ	LPDDR6	In the future	Next-generation Mainstream Technology
	(DDR Memory	DDR5	In the process	Next-generation Mainstream Technology
	Controller)	GDDR6	Now	High-performance Al product
		GDDR7	In the future	High-performance Al product
Total Memory		НВМ3	Now	Server and ultra-high-performance products
		LPDDR4X/4	Now	TSMC 22nm Nodes
		LPDDR4X/4, LPDDR5/4X/4	Now	TSMC 12nm Nodes
System Solution		LPDDR5X/5/4X/4	Test chip	TSMC 7nm Nodes
IP		LPDDR6	In the future	-
(ORBIT™)	OBLIVIM	DDR5	In the future	-
	(DDR PHY)	GDDR6	Now	TSMC 12nm Nodes
	(SERTITI)	НВМ3	Test chip	TSMC 7nm Nodes
		LPDDR4X/4, LPDDR5/4X/4	Now	Samsung 14nm Nodes
		LPDDR5X/5/4X/4	In the process	Samsung 5nm Nodes
		LPDDR6	In the future	-
		GDDR7	In the future	-
	OICTM	OICTM	Now	Non- Cache-Coherent NoC
	(On-Chip-Interconnect)	OIC TM -AI	In the process	Cache-Coherent NoC

03 | Industry's Highest Technological Competitiveness 4

Maximize first-mover advantage of AI semiconductor integrated IP solutions, based on the continued development of leading-edge processing

04 | Verified Global Track Records

Expanding global track record as value recognized as the essential solution in various industries

05 | Business Partnership with Global Enterprises

Securing stable IP demands + Proactive response to advanced technologies and market trends

03

Financials

- 01. Financial Statement Summary
- 02. 2022 Sales revenue Breakdown
- 03. Annual Sales revenue Analysis

01 | Financial Statements Summary

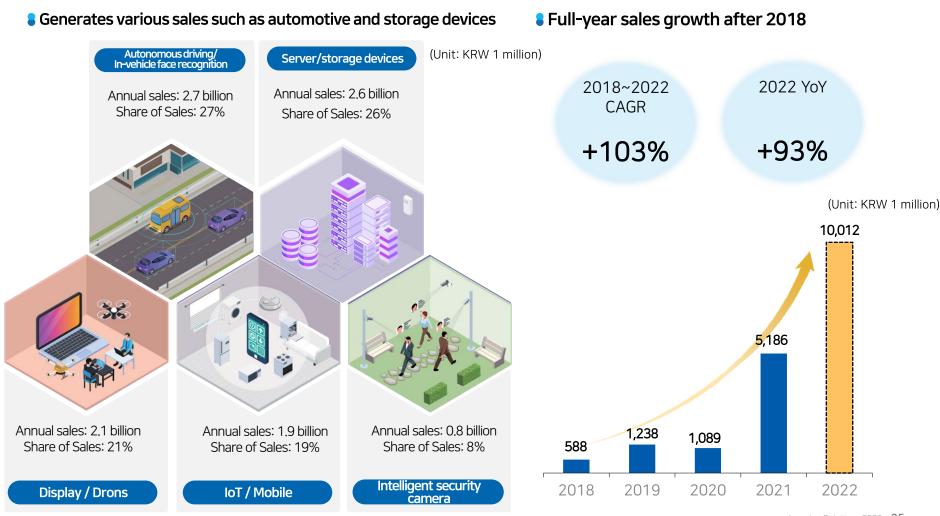
Summary of Financial Statements

(Unit: KRW 1 million)

				(OTHER TATAVA T THIIIIOTI)		
	2022	2021	2020	2019		
Current Assets	44,304	29,020	6,216	6,503		
Non-current Assets	9,552	7,077	4,075	4,225		
Total Assets	53,855	36,097	10,291	10,728		
Current Liabilities	18,318	9,171	5,477	1,631		
Non-current Liabilities	3,288	6,374	31,550	17,916		
Total Liabilities	21,606	15,545	37,027	19,547		
Capital	2,116	1,653	15	15		
Capital Surplus	96,376	58,927	-	-		
Other Capital	2,026	3,006	1,697	348		
Earned Surplus	-68,269	-43,034	-28,449	-9,183		
Total Capital	32,249	20,552	-26,737	-8,820		

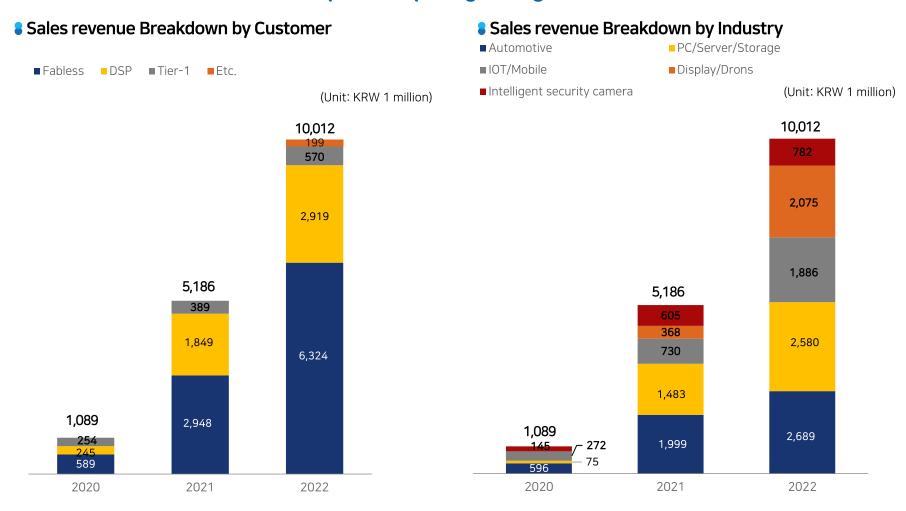
Summary of Income Statements

(Unit: KRW 1 million)


	2022	2021	2020	2019
Sales	10,012	5,186	1,089	1,238
Sales Cost	-	-	-	_
Gross Margin	10,012	5,186	1,089	1,238
Sales Management Expenses	35,273	16,241	9,581	4,784
Operating Profits	-25,261	-11,055	-8,492	-3,546
Financial Profits	1,409	194	170	425
Financial Costs	1,101	3,679	11,131	5,757
Other Profits	476	58	425	39
Other Costs	368	42	6	7
Net Profit before Corporate Tax Costs	-24,846	-14,524	-19,034	-8,845
Corporate Tax Costs	381	84	237	-37
Current Net Income	-25,227	-14,608	-19,271	-8,808

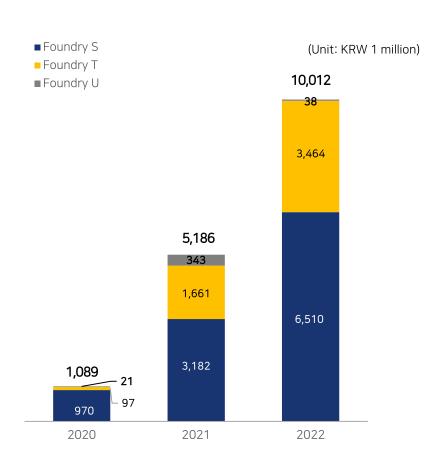
^{**} Based on the consolidated financial statements

02 | 2022 Sales revenue Breakdown


Expect continuous sales growth according to various industrial needs

03 | Annual Sales revenue Analysis

Expansion of fabless and design house-centered customer pool + Sales by industry are growing in all sectors



03 | Annual Sales revenue Analysis

Foundry S and Foundry T Sales to the top two foundries grew by over 100% YoY

Sales by foundry (based on SoC producers equipped with our IP)

Breakdown of Openedges sales revenue by foundry

☐ Continued growth in sales volume of the two major foundries

Foundry S: joined the IP Alliance (2018) and strengthening cooperation

Foundry T: Securing mass production performance for joining the IP Alliance

* After joining the IP Alliance of T, orders from T's customers are expected to surge

'20~'22 Openedges sales revenue by Foundry

	'20	'21	'22	YoY	CAGR ('20~'22)
S	970	3,182	6,510	105%	159%
(%)	(89%)	(61%)	(65%)		
Т	97	1,661	3,464	109%	498%
(%)	(9%)	(32%)	(35%)		
U	21	343	38	∆89%	
SUM	1,089	5,186	10,012	-	-